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This appendix includes our supplementary materials as follows:
- Methodology Supplement in Sec. 1.
- Further Details on Depth Guider in Sec. 1.1.
- Baseline implementations in Sec. 1.2.
- Long Video Inference in Sec. 1.3.
- Considerations for Skeletal Dilation in Sec. 1.4.
- Data Flow in Sec. 1.5.

- Experimental Supplement in Sec. 2.
- More Implementations in Sec. 2.1.
- Unified Standard for Comparative Experiments in Sec. 2.2.

- Dataset Supplement in Sec. 3.
- Detailed Information on Training Dataset in Sec. 3.1.
- Analysis of Noisy Training Dataset in Sec. 3.2.
- Detailed Information on Multi-Character Dataset in Sec. 3.3.

- Limitation in Sec. 4.
- Additional Visualizations in Sec. 5.

1 METHODOLOGY SUPPLEMENT
1.1 Further Details on Depth Guider

Algorithm 1: Pseudocode for depth map mask extraction
Input: Given a training video 𝑣 of length 𝑁 , where the 𝑖𝑡ℎ

frame is denoted as 𝑣𝑖 , and suppose that 𝐽 characters
on 𝑣𝑖 . The skeleton extraction network is denoted as
𝑓s. The expansion network is denoted as 𝑓e. The
depth extraction network is denoted as 𝑓d. The
average depth sorting (ascending order) operator is
denoted as 𝑓sort. The value assigned to 𝑟 𝑗 based on
depth ranking is denoted as 𝐿𝑟 𝑗 . The depth guider is
denoted as 𝑔dp.

1 Initialize 𝑐depth,1,0, . . . , 𝑐depth,𝑁 ,0 = 0.
2 Initialize an array 𝐶𝑅 .
3 for 𝑖 = 1 to 𝑁 do
4 𝑎𝑖,1, . . . , 𝑎𝑖,𝐽 = 𝑓e (𝑓s (𝑣𝑖 ))
5 for 𝑗 = 1 to 𝐽 do
6 𝑚𝑖, 𝑗 = 𝑎𝑖, 𝑗 −

(
1 −⋃𝑗∈{1,...,𝐽 }

(
𝑎𝑖, 𝑗

) )
7 𝑟1, . . . , 𝑟 𝐽 = 𝑓sort

(
𝑚𝑖,1 ⊙ 𝑓d (𝑣𝑖 ) , . . . ,𝑚𝑖,𝐽 ⊙ 𝑓d (𝑣𝑖 )

)
8 for 𝑟 𝑗 = 𝑟1 to 𝑟 𝐽 do
9 𝑐depth,𝑖,𝑟 𝑗 =

𝑚𝑖,𝑟 𝑗 ⊙ 𝐿𝑟 𝑗 +
((
1 −𝑚𝑖,𝑟 𝑗

)
⊙ 𝑐depth,𝑖,(𝑟 𝑗−1)

)
10 𝐶𝑅 [𝑖] ← 𝑐depth,𝑖,𝑟 𝐽

11 𝑐depth = 𝑔dp (𝐶𝑅)
12 return 𝑐depth

1.2 Baseline implementations
BC. Each agent policy 𝜋𝑖 w.r.t. parameters 𝜃𝑖 is optimized by the
following loss

LBC (𝜃𝑖 ) = E𝜏𝑖 ,𝑎𝑖∼B [− log(𝜋𝑖 (𝑎𝑖 | 𝜏𝑖 ))] . (1)

1.3 Long Video Inference
We employ the overlap method for long video inference to maintain
the consistency of long video. As illustrated in Fig. 1, We divide the
pose sequence into multiple smaller segments for inference, with
overlapping parts between adjacent segments. For the overlapping
parts of two segments, we perform addition and averaging to gen-
erate temporal smoothing between the two segments. In this work,
we perform inference on every 16 frames with a stride of 8 frames,
and then stitch them together using an overlap of 8 frames.

1.4 Further Details on Skeletal Dilation
We use skeletal dilation as a mask to cover the character region
in the “Optical Flow Maps” and “Depth Maps”. The purpose of
masking off the character regions in “Optical Flow Maps” is to
separate character motion from background motion. Therefore, the
model can differentiate character motion that requires learning
from background motion that needs to be removed. Additionally,
the skeletal dilation of different characters is assigned different
values in “Depth Maps” based on positions, which are utilized to
differentiate various character regions. In summary, the skeletal
dilation represents the character region in “Optical Flow Maps” and
“Depth Maps”.

As illustrated in Fig 2, skeletal dilation is computed from pose
sequence, one of the inputs during inference. We do not propose
employing more precise regional information of characters during
inference, such as semantic segmentation or 3D modeling graphs.
Because they impose strong spatial constraints on the motion of the
overall region of the character, inconsistent body shape or clothing
in the inference image will lead to a decrease in effectiveness. This
is primarily why we utilize pose sequence and skeletal dilation.
Maybe one concern is that skeletal dilation often fails to cover the
character region comprehensively. First, skeletal dilation represents
only rough but not exact character regions, both during training
and inference. This is aligned during both training and inference.
Second, in the notable work of regional image animation [5], it is
confirmed that models animate the objects represented by the mask
region, rather than animating the mask region itself.

1.5 Data Flow
Here we will describe it in detail. In training, we use “Reference
Image” and “Training Video” as input before the data processing.
After the data processing, we obtain four conditions: “Reference
Pose”, “Character Depth Maps”, “Pose Sequence”, and “Optical Flow
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Figure 1: The pipeline for inferring long videos.
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Figure 2: The pipeline of skeletal dilation.

Maps” from the input “Reference Image” and the “Training Video”.
Specifically, in data processing, we extract “Reference Pose” from
“Reference Image”; extract “Pose Sequence” from “Training Video”;
obtain “Depth Maps” from both the “Training Video” and “Dilate-
skeletonMaps”; obtain “Optical FlowMaps” from both the “Training
Video” and “Dilate-skeleton Maps”. The detailed data processing
can be found in the methodology section of the paper.

The main difference between inference and training is that using
“Reference Image”, and “Pose Sequence” instead of “Training Video”,
as input before the data processing, but getting the same four condi-
tions after data processing. During the data processing, we directly
utilize the input “Pose Sequence”; obtain “Depth Maps” from “Ref-
erence Image” and copy it into n frames instead of obtaining from
“Training Video”; and obtain “Optical Flow Maps” from “Zero Ten-
sor” because we want to generate videos with a background optical
flow of 0, i.e., static background.

2 EXPERIMENTAL SUPPLEMENT
2.1 More Implementations
In the data processing, we utilize the DWPose [12] to extract pose
sequence from videos, and PWC-Net [8] from the open-source
toolbox MMFlow [2] to calculate optical flow vectors. Additionally,
we use the Depth Anything [11] to extract depth maps from videos.

When conducting long video inference, we perform inference
on every 16 frames with a stride of 8 frames, and then stitch them
together using an overlap of 8 frames. Besides, We resize and center-
crop the “Reference Image” and “Pose Sequence” to a uniform res-
olution of 896×640 pixels (512×512 pixels in comparative experi-
ments). We apply DDIM [7] sampler for 50 denoising steps, with
classifier-free guidance [3] scale of 1.5.

2.2 Unified Standard for Comparative
Experiments

We noticed in the comparative experiment that not all approaches
adhere to a uniform inference size and other inference details. As
depicted in Table 1, there are primarily three inconsistent stan-
dards that may affect fair comparisons. Below, I will use Method

bof-mean=1.0 bof-mean=1.5 bof-mean=2.0 bof-mean≥3.0

Background Optical Flow Mean (bof-mean)

Figure 3: Videos with different background optical flow
means.

Disco+ [9] as an example to illustrate how inconsistent standards
affect the fair comparison of metrics, as shown in Table 2. Firstly,
as shown in the comparison between the first and second rows of
Table 2, different inference sizes result in different metrics. Table 1
shows the inconsistent inference sizes of each method. Secondly,
some works resize without center-crop, which can result in signif-
icant differences in the test set, as illustrated in Table 1. Besides,
compared to other methods, Disco has a bug in measurement, re-
sulting in fewer video segments being sampled when calculating
FID-VID and FVD. This will lead to a decrease in FID-VID and FVD
of Disco, as shown in Table 2.

As methods with different standards result in different metrics,
potentially leading to unfair comparisons, we standardize the in-
ference sizes by center-cropping and resizing to 512×512, and we
rectify the bug in the measurement of disco. Under this unified
standard, we reevaluate methods that do not conform to this infer-
ence size and directly reference relevant statistical data from the
original literature of methods that do comply. Most previous works
directly reference inconsistent statistical data from other works for
comparison, resulting in unfair comparisons. We are the first to
conduct comparative work under a unified standard, and this is one
of our notable contributions.

3 DATASET SUPPLEMENT
3.1 Detailed Information on Training Dataset
We collect 4,017 character videos totaling 2,013,628 frames as our
training set. The data come from public videos on TikTok, YouTube,
and other websites. The detailed composition of the training dataset
is shown in Table 3.
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Table 1: Inconsistent standards across all methods.

Method Inference Size Center-Crop Uninterrupted Frames
MRAA [6] 384×384 × ✓
TPSMM [13] 384×384 × ✓
DreamPose [4] 512×640 × ✓
DisCo[9] 256×256 ✓ ×
MagicAnime[10] 512×512 ✓ ✓
MagicPose[1] 512×512 × ✓

Table 2: The ablation experiment on the inference standards of Disco+.

Inconsistent Standards FID↓ SSIM↑ PSNR↑ LPIPS↓ L1↓ FID-VID↓ FVD↓
256×256, w/o uninterrupted frames 28.31 0.674 29.15 0.285 3.69E-04 55.17 267.75
512×512, w/o uninterrupted frames 48.29 0.713 28.78 0.320 1.03E-04 52.56 334.67
512×512, w/. uninterrupted frames 48.29 0.713 28.78 0.320 1.03E-04 47.73 312.49

Table 3: The detailed composition of the training dataset.

Source Videos Frames Proportion
Tiktok 2,493 1,379,449 68.5%
YouTube 938 435,293 21.6%
Kuaishou 424 115,101 5.7%
Bilibili 162 83,785 4.2%

Figure 4: Histogram of the distribution of background optical
flow mean in training set.

3.2 Analysis of Noisy Training Dataset
In our training dataset, there exists a substantial amount of noisy
data, with the significant proportion is data with unstable back-
grounds. We calculate the optical flow map of the background by
using skeletal dilation map as mask to remove the character regions.
After averaging the background optical flow map for each frame
of a video, we obtain the background optical flow mean for each
video. Fig. 3 shows videos with different background optical flow
means. We can observe that only when the background optical
flow mean is less than 1, the motion of the background of video is

imperceptible to the human eye. Fig. 4 illustrates the distribution
of the background optical flow mean in the training set. We can
find that only 12% of the training set videos have a background
optical flow mean less than 1. This indicates that at least 88% of the
background unstable noise data in our training set is present, and
it is necessary to incorporating background optical flow maps into
the network for training.

3.3 Detailed Information on Multi-Character
Dataset

We collect 20multiple-character dancing videos, totally 3917 frames,
from social media, namedMulti-Character. Table 4 show the detailed
sources of Multi-Character.

4 LIMITATION
In this work, we are dedicated to addressing the issues of back-
ground stability and character overlap. However, there are still
several problems in pose-controllable character video generation
that we have not resolved: First, similar to most approaches, our
model struggles to generate highly refined facial and hand details.
Second, our model also struggles to generate substantial swaying of
long skirts, Hanfu, or other large-area clothing very well. Third, our
model also faces challenges in handling complex multiple-character
scenarios, such as those involving four or more characters, or ex-
tensive swapping of positions among characters.

5 ADDITIONAL VISUALIZATIONS
See the video in the supplementary materials, as well as Fig. 5 to
Fig. 9 provided last in this document.
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Table 4: The source of Multi-character dataset.

Video Name Url Timestamp
Daovm348PQQ_0 https://www.youtube.com/watch?v=Daovm348PQQ 00:10–00:14
Daovm348PQQ_1 https://www.youtube.com/watch?v=Daovm348PQQ 00:16–00:25
Daovm348PQQ_2 https://www.youtube.com/watch?v=Daovm348PQQ 00:47–00:53
Daovm348PQQ_3 https://www.youtube.com/watch?v=Daovm348PQQ 01:11–01:15
Daovm348PQQ_4 https://www.youtube.com/watch?v=Daovm348PQQ 01:16–01:21
Daovm348PQQ_5 https://www.youtube.com/watch?v=Daovm348PQQ 01:22–01:25
Daovm348PQQ_6 https://www.youtube.com/watch?v=Daovm348PQQ 02:02–02:09
Daovm348PQQ_7 https://www.youtube.com/watch?v=Daovm348PQQ 02:11–02:15
Daovm348PQQ_8 https://www.youtube.com/watch?v=Daovm348PQQ 02:16–02:20
HpFDXGAo25c_0 https://www.youtube.com/watch?v=HpFDXGAo25c 00:20–00:33
HpFDXGAo25c_1 https://www.youtube.com/watch?v=HpFDXGAo25c 00:38–00:43
HpFDXGAo25c_2 https://www.youtube.com/watch?v=HpFDXGAo25c 00:44–00:52
jx_VseYOi5A_0 https://www.youtube.com/watch?v=jx_VseYOi5A 00:32–00:37
jx_VseYOi5A_1 https://www.youtube.com/watch?v=jx_VseYOi5A 00:40–00:53
jx_VseYOi5A_2 https://www.youtube.com/watch?v=jx_VseYOi5A 01:02–01:07
jx_VseYOi5A_3 https://www.youtube.com/watch?v=jx_VseYOi5A 01:08–01:12
ka3BfUsvRqE_0 https://www.youtube.com/watch?v=ka3BfUsvRqE 00:21–00:27
ka3BfUsvRqE_1 https://www.youtube.com/watch?v=ka3BfUsvRqE 00:28–00:33
ka3BfUsvRqE_2 https://www.youtube.com/watch?v=ka3BfUsvRqE 02:56–03:05
ycInNCB8rbA_0 https://www.youtube.com/watch?v=ycInNCB8rbA 00:10–00:15

Figure 5: Additional Visualizations 1.
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Figure 6: Additional Visualizations 2.

Figure 7: Additional Visualizations 3.
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